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Single Cooper-pair Box (SCB)

— () QD

SE 2 1 1 1 1 I I | | 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

________________ ng(2e)



C(fF)

Quantum Capacitance Detector

RF In
RF out

{ % .
Cc /sland
ysorber
()

L —— C .

Resonator

Photon

x 10719

0 0.5 1 1.5 2 ;
Bias Voltage(2e/Cg) Bias Voltage(2e/Cqg)




&

Response and noise as a function of
optical signal

The Quantum Capacitance Detector

NEP as a function of optical signal
Photon shot noise limited!
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Lens coupled mesh absorber LEQCD

* Need mesh absorber instead of antenna to better couple to spectrometer modes
* Lumped element resonator saves space and has better characteristics than CPW
half wave resonator
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Lens coupled mesh absorber LEQCD
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Lens coupled mesh absorber LEQCD
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Measurement setup
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Measurement setup
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@ Lens coupled mesh absorber LEQCD @

* QCD response as a function of optical power
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Lens coupled mesh absorber LEQCD

NEP for various levels of optical illumination
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PSD time span 2s
Gate sweep
frequency 100Hz
One sweep =6
peaks

QC peaks = 600Hz
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Lens coupled mesh absorber LEQCD
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P12 dependence implies photon noise limited performance
Efficiency extracted form ratio of measured NEP and photon shot

noise NEP
Should be able to detect single photons




Search for Single Photon Events — clues from DC biased time streams
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Measure time trace while DC
biased

Obtain histogram of dwell
times

Fit histogram to exponential
decay

Rate for longer times is due to
residual lifetime

Faster rate at shorter times
due to single photons

Tried to look for those faster
events in smaller chunks of
time stream — DAQ rate not
fast enough to get good signal
to noise ratio

Can estimate how fast the
initial tunneling rates are from
the measured tunneling rates
versus number of
guasiparticles

One photon generates on
average 20 quasiparticles=>
instantaneous rate about
220kHz



How to filter out background tunneling

Gate sweep frequency << Tunneling in rate

o
™

o
N

o
»

o
(N

Island Occupation Probability

0 1 2 3 4 5 6
Bias Voltage(2e/Cg)

2 T T T T T

05 I I | L L
0 1 2 3 4 5 6

Bias Voltage(2e/Cg)



How to filter out background tunneling

Gate sweep frequency > Tunneling in rate — effect of photon absorption
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How to filter out background tunneling

Gate sweep frequency > Tunneling in rate — effect of background tunneling =

e-shifts
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How to filter out background tunneling
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“ Fast sweep reveals single photon events spoiling QC signal

Sweep rate ~ 22kHz spanning 3 Quantum Capacitance Peaks => effective sweep rate ~ 66kHz

Should block background tunneling while still allowing tunneling due to single photon absorption

Raw QC time trace should be absolutely periodic
Gaps are due to high tunneling suppressing the Quantum Capacitance signal

Therefore Gaps should be due to single photon absorption
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Variance evaluated in 30 us bins shows photon events

From time traces calculated variance of slices corresponding to 2 QC peaks (to avoid problems at
the edge of sweep with e-shifts) —slices are 30us long

Subtracted this trace from the maximum of the traces

Gaps in the Quantum Capacitance trace will show up as peaks

Repeat for different black body source temperatures
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Photon arrival intervals follow Poisson statistics

* From the photon time traces, extract dwell time histograms — exponential decay corresponds to
Poisson statistics

* Calculate probability of having N photons within a time interval 36ms (Arbitrarily picked)

*  Plot probability x number of photons; blue circles is measured, lines are calculated Poisson
distribution probability (no fit, just using measured average number of photons)
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Photon arrival statistics

Cold black body

Histogram of response for various black TR
body temperatures oer
For cold black body only peak around
0.25 exists 0
For hot black body peak around 0.6-0.7 =T
is larger than peak at 0.25
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* Peaks get closer together at high black body temperatures due to filtering by the
resonator of the high frequency stream

* Could lower resonator Q by stronger coupling at the expense of fewer channels




Counts of response between 0.6 and 0.9 versus number of expected photons
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Conclusion

« QCDs shot are noise - Far-IR Detector Requirements
limited at 10-1°W of i Photon Background NEP)
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